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Abstract

An even-hole-free graph is a graph that has no induced even cycles of length
at least 4. This class is structurally similar to the class of perfect graphs, which
was one initial motivation for their study. But it is also of independent interest
due to its relationship to β-perfect graphs. The class of even-hole-free graph is
an object of much interest. A decomposition theorem and a recognition algorithm
are known for this class, but the problem of coloring them in polynomial time or
finding a maximum stable set are open in general. A natural approach is to study
more closely the structure of graphs in this class, for instance by looking for a
decomposition theorem or computing its treewidth. In the case where triangles are
excluded, there exists a fruitful decomposition theorem by Conforti, Cornuéjols,
Kapoor, and Vǔsković for even-hole-free graphs, which leads to small treewidth
of graphs in this class. Furthermore, Adler, et al. prove that the class of (dia-
mond, even-hole)-free graphs have unbounded rank-width which yields unbounded
treewidth. For a larger subclass of even-hole-free graphs, for instance in (K4, even-
hole)-free class, such result is not known. The goal of this internship is to study
this class of graphs.

At first, we conjectured that (K4, even-hole)-free graphs have a small
treewidth, but now we believe that the treewidth is unbounded, because we prove
this for a class of graphs that has a similar but simpler structure, namely (K4, even-
hole)-free graphs. This class of graphs have been studied earlier. For instance,
Radovanovic and Vǔsković prove that graphs in this class are 3-colorable, and
there exists an algorithm that colors them in polynomial time. In this report, we
prove that a (4, 3PC(·, ·))-free graphs may have arbitrarily large treewidth, by
providing a construction of graphs that have such property. For further study, we
aim to generalize our construction to the class of (K4, even-hole)-free graphs.

1 Introduction

Throughout the report, all graphs are finite, simple, and undirected. The readers should
refer to Appendix A for more notions and terms of Graph Theory that are used in this
report. For a graph G(V,E) (or G for short), V (G) and E(G) denote the set of vertices
and edges of G respectively. When the context is clear, we will write V and E instead of
V (G) and E(G). A subgraph H of G is a graph where V (H) ⊆ V (G) and E(H) ⊆ E(G).
It is called an induced subgraph if E(H) is formed by all possible connections of V (H)
in G. We say that a graph G contains a graph F , if F is isomorphic to an induced
subgraph of G, and G is F -free if it does not contain F . Let F be a (possibly infinite)
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family of graphs. A graph G is F-free if it is F -free, for every F ∈ F . It is well-known
that for any hereditary graph class G there is a family F of graphs s.t. G is F-free.

One of the most interesting class of graphs that is F-free is the class of perfect
graphs. A graph G is perfect if for every induced subgraph H of G, we have χ(H) =
ω(H). Here, χ(H) denotes the chromatic number of H, i.e. the minimum number of
colors needed to properly color the vertices of H (meaning that any pair of vertices that
induces an edge in G are given different colors), and ω(G) is the size of largest clique
in G, where a clique in a graph is an induced subgraph in which every pair of vertices
are adjacent. The famous Strong Perfect Graph Theorem, conjectured by Berge (1961)
and proved by Chudnovsky, Robertson, Seymour, and Thomas [6] states that a graph
is perfect if and only if it does not contain an odd hole nor an odd antihole, where a
hole is a chordless cycle of length at least four and an antihole is a hole in Ḡ, with
Ḡ is the complement of G (see Appendix A for the definition). A hole is odd or even
depending on the parity of its length.

The class of even-hole-free graphs (or abbreviated to be EHF graphs) is struc-
turally quite similar to the class of perfect graphs. The tools developped to study EHF
graphs became a key of studying this class. Its structure was first studied by Conforti,
Cornuéjols, Kapoor, and Vǔsković in [12], where they present a decomposition theo-
rem for this class using 2-joins and k-star, that was used later in constructing poly-time
recognition algorithm. Conforti, et al. [15] proved the Strong Perfect Graph Conjecture
for 4-hole-free graphs, by decomposing Berge graphs using star cutsets and 2-joins into
bipartite graphs and line graphs of bipartite graphs, and later, Chudsnovky, et al. use
the similar approach to prove the general case, i.e. when 4-holes are allowed. We will
describe the structure of EHF graphs in more details in Section 1.1.2.

The class of EHF graphs has taken a lot of attention, for a survey, see [27]. The
study of this topic is also motivated by their connection to β-perfect graphs that was
introduced by Markossian, et al. [21]. For a graph G, define β(G) = max{δH + 1}
where H is an induced subgraph of G, and δG is the minimum degree of a vertex in G.
Consider a total ordering of vertices of G by repeatedly removing a vertex of minimum
degree in the subgraph of vertices not yet chosen and placing it after all the remaining
vertices but before all the vertices already removed. Coloring greedily on this order
shows that χ(G) ≤ β(G), and we say G is β-perfect if χ(H) = β(H) for any induced
subgraph H of G. It is easy to see that β-perfect graphs are even-hole-free (note that
β(C2k) = 3 and χ(C2k) = 2 for k ≥ 2). Indeed, Markossian, et al. [21] show that G (and
Ḡ) is β-perfect if and only if it does not contains an even hole nor an even antihole,
which is an interesting analogue of the Strong Perfect Graph Theorem.

In the view of combinatorial optimization problems, as we know, for the class of
perfect graphs, a lot of combinatorial problems such as maximum clique, maximum
stable set, and optimal coloring can be solved in polynomial time. For EHF graphs,
the complexities of finding a maximum stable set or an optimal coloring are not known.
Fortunately, the maximum clique problem is polynomially solvable, because the class of
4-hole free graphs, which is a superclass of EHF graphs, have O(n2) maximal cliques,
and hence one can list all of them in polynomial time, precisely in O(n4.376) (see [27]).

For optimal coloring problem, in [1], it is proved that EHF graphs are χ-bounded,
namely there exists a function f s.t. for every induced subgraph H of an EHF graph
G, χ(H) ≤ f(ω(H)) (in this case, χ(H) ≤ 2ω(H) − 1 for every H). Furthermore,
as been mentioned earlier, the class of β-perfect graphs, which is a subclass of EHF
graphs can be colored in poly-time. Unfortunately, the poly-time recognition algorithm
for this class is not known in general. Kloks, et al. [18] show that EHF graphs having
no diamond are β-perfect, where the diamond is the graph obtained by removing one
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edge from a complete graph on 4 vertices. This motivates us to asking what kind of
structural tools might give new insights for EHF graphs.

1.1 Background

1.1.1 Truemper Configurations

Truemper configurations are an important tool to describe the structures of several
classes of graphs. Much research has been done in this area, for a survey, see [28].
We now define the Truemper configurations, which consist of 3-path configurations and
wheels, where 3-path-configurations are graphs isomorphic to a prism, a pyramid, or
a theta, as depicted in the first three graphs of Fig. 1. These structures appear in a
theorem of Truemper [26] that characterizes graphs whose edges can be labeled so that
all chordless cycles have prescribed parities (see Corollary 1.1 of [26] or Theorem 2.1 of
[27]).

(a) 3PC(·, ·) (b) 3PC(4,4) (c) 3PC(4, ·) (d) wheel

Figure 1: Truemper configurations (solid lines represent edges and dashed lines rep-
resent chordless paths of length as described in the definition below)

Let x, y be two distinct vertices of G. A 3PC(x, y) is a graph induced by three
chordless (x, y)-paths (which are denoted by P1, P2, and P3), s.t. P1, P2, and P3 all have
length at least 2. Note that the 3PC(·, ·) with fewest number of vertices is isomorphic
to K2,3, where K2,3 is complete bipartite graphs where each component contains 2 and
3 vertices respectively. We say a graph G contains a 3PC(·, ·) if it contains a 3PC(x, y)
for some x, y ∈ V (G). 3PC(·, ·)’s are also known as thetas.

Let x1, x2, x3, y1, y2, y3 be six distinct vertices of G s.t. {x1, x2, x3} and {y1, y2, y3}
induce triangles. A 3PC(x1x2x3, y1y2y3) is a graph induced by three chordless paths
P1, P2, P3 each connecting (x1, y1), (x2, y2), and (x3, y3) respectively, s.t. P1, P2, P3 all
have length at least 1. We say that a graph G contains 3PC(4,4) if it contains
a 3PC(x1x2x3, y1y2y3) for some x1, x2, x3, y1, y2, y3 ∈ V (G). 3PC(4,4)’s are also
known as prisms.

Let x1, x2, x3, x be four distinct vertices of G s.t. {x1, x2, x3} induces a triangle. A
3PC(x1x2x3, x) is a graph induced by three chordless paths P1, P2, P3 each connecting
(x, x1), (x, x2), and (x, x3) respectively, s.t. two of P1, P2, P3 are of length at least 2,
and the other has length at least 1. We say that a graph G contains 3PC(4, ·) if it
contains a 3PC(x1x2x3, x) for some x1, x2, x3, x ∈ V (G). 3PC(4, ·)’s are also known
as pyramids.

Recall that a hole in a graph is a chordless cycle of length at least 4. The constraints
on the length of the paths in the three definitions above are designed in such a way that
the union of any two of the paths in a 3PC induce a hole. Let us now define wheels.
A wheel, denoted by (H, v) is a graph formed from a hole H and a vertex v ∈ G\H
having neighbors v1, · · · , vn in H where n ≥ 3. The hole H is called rim, the vertex
v is the center of the wheel, and edges vvi for i ∈ {1, · · · , n} are called spokes of the
wheel. A subpath of H connecting vi and vi+1 is called a sector of (H, v), and it is
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denoted by Vi. For a wheel (H, v), the set of neighbors of v in H is ordered from the
lowest index to the highest in a counter-clockwise order.

The Truemper configurations play a key role in structural graph theory. It is
easy to observe that a 3PC(4, ·) contains an odd hole, and similarly 3PC(·, ·) and
3PC(4,4) contain even holes. To see this, note that each of the 3PC’s contains
three different paths which implies that at least two of them have same parity. These
paths together with the triangles or vertices contained in the 3PC create an odd or
even hole. Therefore, 3PC(4, ·)-free graphs form a superclass of perfect graphs, and
3PC(4,4)-free graphs and 3PC(·, ·)-free graphs are superclass of the class of EHF
graphs. These superclasses capture some essential feature of the classes where they are
included. Hence, Truemper configurations are a kind of tool to study some hereditary
classes of graphs, which is also interesting in their own right.

A graph excluding all the Truemper configurations is called universally signable
graph. It has been proved that this class has a very nice structure. Indeed, Conforti, et
al. [9] give a decomposition theorem saying that a universally signable graph is either a
clique, or a chordless cycle, or has a clique cutset. A natural question to ask is, whether
Truemper configurations can be recognized in polynomial time. This question arised
in the search for an algorithm to recognize perfect graphs. Indeed, it has been proved
that detecting 3PC(4, ·) can be done in time O(n9) [5], and detecting 3PC(·, ·) is in
time O(n11) [7]. While pyramids and thetas can be detected in poly-time, detecting
3PC(4,4)’s and detecting wheels are NP-Complete problems (see [17], [20]).

1.1.2 Structure of even-hole-free graphs

A graph G is connected if for every pair of vertices u, v ∈ V , there exists a path
from u to v. A graph that is not connected is sometimes called disconnected. In a
connected graph G, a subset S of V is a cutset if the removal of G[S] disconnects G.
A decomposition of a graph G is a set of subgraphs H1, · · · , Hk that partition E(G),
i.e. for every 1 ≤ i, j ≤ k,

⋃
iHi = G and E(Hi)∩E(Hj) = ∅ for i 6= j. A decomposition

theorem for a class of graphs G states that every graph in G either has a particular type
of a cutset or belongs to a basic (i.e. undecomposable) subclass of G. The following
cutsets are used in the decomposition of EHF graphs (for diagram illustrating these
cutsets, see Fig. 17 in Appendix).

A cutset S is a clique cutset if S induces a clique. S is a k-star cutset if it is
comprised of a clique C of size k s.t. every vertex of S\C has at least one neighbor in
C. A 1-star is also referred to as a star. If S = N [C], then S is called a full k-star.
A graph G has a 2-join (V1, V2), with special sets (A1, A2, B1, B2), if the vertices of G
can be partitioned into sets V1 and V2 s.t. the following hold.

(i) For i = 1, 2, Ai ∪Bi ⊆ Vi, and Ai and Bi are nonempty and disjoint

(ii) Every vertex of A1 (resp. B1) is adjacent to every vertex of A2 (resp. B2), and
these are the only adjacency between V1 and V2.

(iii) For i = 1, 2, G[Vi] contains a path with one end-node in Ai and the other in Bi.
Moreover, G[Vi] is not a chordless path.

A long 3PC(4, ·) is a 3PC in which all the paths P1, P2, P3 has length greater
than 1. Note that when P1, P2, P3 have a same parity, a long 3PC(4, ·) is EHF, but
have no k-star cutset nor a 2-join. Moreover, it is an obvious fact that cliques and an
odd holes are EHF. It yields that cliques, odd holes, and long 3PC(4, ·)’s form a basic
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class of the class of EHF graphs. Furthermore, Conforti, et al. [12] introduced another
basic class of EHF graphs that is called nontrivial basic graph (see Fig. 2).

In order to understand the construction, we need to introduce the notion of line
graph. Given a graph G, its line graph L(G) (or L for short) is a graph such that each
vertex of L represents an edge of G, and for p, q ∈ V (L), pq ∈ E(L) if and only if
their corresponding edges ep, eq ∈ E(G) share a common end-node in G. Let L be the
line graph of a tree. Note that every edge of L belongs to exactly one maximal clique
and that every vertex of L belongs to at most two maximal cliques. The vertices of
L that belong to exactly one maximal clique are called leaf vertices. A clique of L is
big if it has size at least 3. In the graph obtained from L by removing all edges in big
cliques, the connected components are chordless paths (possibly of length 0). Such a
path P is an internal segment if it has its end-nodes in distinct big cliques (when P is
of length 0, it is called an internal segment when the vertex of P belongs to two big
cliques). The other paths P are called leaf segments. Note that one of the end-nodes
of a leaf segment is a leaf vertex.

A nontrivial basic graph R is defined as follows: R contains two adjacent vertices
x and y, called the special vertices. The graph L induced by R\{x, y} is the line graph
of a tree and contains at least two big cliques. In R, each leaf vertex of L is adjacent to
exactly one of the two special vertices, and no other vertex of L is adjacent to special
vertices. The last condition for R is that no two leaf segments of L with leaf vertices
adjacent to the same special vertex have their other end-node in the same big clique.
The internal segments of R are the internal segment of L.

x

y

Figure 2: Nontrivial Basic Graph of EHF Class

Theorem 1.1. (Conforti, Cornuéjols, Kapoor, and Vǔsković [12]) A connected 4-hole-
free, odd-signable graph is either a clique, a hole, a long 3PC(4, ·) or a nontrivial basic
graph, or it has a 2-join or k-star cutset, for k ≤ 3.

This decomposition theorem is the main tool to construct the first known polyno-
mial time recognition algorithm for EHF graphs. Moreover, such recognition algorithm
for this class can be used to find an even hole in a graph G, if one exists. Later, da Silva
and Vǔsković [16] strengthen this decomposition theorem by decomposing the class of
EHF graphs with the star-cutsets and 2-joins. The problem with the star cutset is
that it can be very big, so there is not much structure one can work with. In the
other hand, 2-joins have a better structure within the cutset. In the class of EHF and
Berge graphs, there is an interesting relationship between star cutset decomposition
and 2-join decomposition, where one can build a decomposition tree by first doing star
cutset decompositions and then 2-join decompositions, with leaves are undecomposable
blocks (i.e. the basic graphs in the class). Analogous separation exists in Berge graphs,
using skew cutsets (see Appendix A for the definition) and 2-joins [25].
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1.2 Problems and Outline

A triangle, denoted by K3 or 4 is a complete graph on three vertices. Conforti,
Cornuéjols, Kapoor, and Vǔsković [11] prove that when triangles are excluded, the
class of EHF graphs has a very simple structure, which implies that it has a small
treewidth [4] (see Section 2 for more details), in particular for a 4-free, odd signable
graph G, tw(G) ≤ 5. A very natural question to ask is, whether the similar properties
still hold if triangles are allowed. Kloks, Muller, and Vǔsković [18] has investigated the
structure of EHF graphs that do not contain diamonds, where a diamond is a graphs
that is obtained by removing an edge of a K4, the complete graph on 4 vertices. They
prove that every graph in this class contains a simplicial extreme (i.e., a vertex that
is either of degree 2 or whose neighborhood induces a clique). This characterization
implies that for every diamond-free EHF graph G, χ(G) ≤ ω(G) + 1, which means that
this class belongs to the χ-bounded family of graphs (a class of graph G is said to be
χ-bounded if there is a function f s.t. χ(G) ≤ f(ω(G)) for every G ∈ G). Moreover, the
existence of simplicial extremes also shows that diamond-free EHF graphs are β-perfect.

As the first approach, we investigate the class of EHF graphs that do not contain a
K4. Therefore, the main question of this research is, whether the class of K4-free EHF
graphs has a simple structure, for example by checking if the treewidth of is bounded.
In fact, while the class of 4-free, odd-signable graphs has a quite simple structure, it
turns out that the structure of the class of K4-free EHF graphs is more complicated. In
this class, wheels interact in a more complex way. For instance, in the class of 4-free,
odd-signable graphs, it is not possible to have wheels with a same rim, but with two
different centers that are adjacent, meanwhile this case is possible in the class of K4-free
EHF graphs.

Since the class of K4-free EHF graphs were more complicated than expected, we
decided to study the class of (4, 3PC(·, ·))-free graphs, that are simpler, but have a kind
of similar structure for wheels, namely a graphs in this class also may contains wheels of
two adjacent centers having a same rim. Note that Radovanovic and Vǔsković [22] has
analyzed some properties of graph that belongs to the class of (4, 3PC(·, ·))-free graphs.
They show that this class is indeed 3-colorable, and there exists an algorithm that
color them in a quadratic time. Our interest is to study the structure of (4, 3PC(·, ·))-
free graphs, and computing the treewidth of graphs in this class. For the class of
(4, 3PC(·, ·))-free graphs, we conjectured that the treewidth is bounded, but this is
not the case. A graph in this class may have arbitrarily large treewidth (see Section
3.2). Indeed, there exists graphs that contain a complete graph of arbitrarily size as a
minor, which implies that the treewidth is huge.

This report is organized as follows. We have already seen Section 1. In Section
2, we discuss the class of 4-free EHF graphs. We present the decomposition and
characterization of the class of 4-free, odd-signable graphs, and we give the proof that
the class of 4-free, odd-signable graphs and the class of 4-free EHF graphs are indeed,
homeomorphic (see Theorem 2.4). Section 3 discusses the characterization of the class of
(4, 3PC(·, ·))-free graphs. We prove that this class of graphs has unbounded treewidth,
by providing (4, 3PC(·, ·))-free graph that has arbitrarily large treewidth. In Section
4, we discuss the class of K4-free EHF graphs. We try to generalize the construction
that we describe in proving the large treewidth of (4, 3PC(·, ·))-free graphs, to see
whether the class of K4-free EHF graphs also have unbounded treewidth. In the end,
the Appendix provides some background of Graph Theory and some proofs that cannot
be covered in the main sections.
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1.3 Terminologies and Notations

Let G be a graph, and x ∈ V \U with U ( V . We say vertex x is adjacent to U , if x is
adjacent to some vertex of U , and it is strongly adjacent to U , if it is adjacent to at least
two vertices of U . For S ( V (G), we denote by G[S] the subgraph of G induced by
the subset of vertices S. A path P is a sequence of distinct vertices p1, · · · , pk, k ≥ 1,
s.t. pipi+1 ∈ E(G), for all 1 ≤ i < k. If p1 = pk then we call it a cycle. Vertices p1 and
pk are called the end-nodes of the path P . Subpath P\{p1, pk} is denoted by P̊ , and
the set of vertices of P̊ is called internal vertices of P . Let pi and pj be two vertices
of P , s.t. j ≥ i. The path pi, pi+1, · · · , pj are called the (pi, pj)-subpath of P and it is
denoted by piPpj . The length of P is the number of edges in P , and it is denoted by
|P | (similar definition for cycle). An edge e ∈ E(G) is a chord of a path P if E(P ) can
be partitioned into two sets P1 and P2 such that both P1 ∪ {e} and P2 ∪ {e} are paths.
A path (or a cycle) that has no chord is said to be chordless.

Along this report, in some figures, unless stated, solid lines represent edges and
dashed lines represent chordless paths of length at least one. For a vertex x ∈ V (G),
NG(x) (or N(x) when the context is clear) denotes the set of neighbors of x in G, and
NG[x] = NG(x)∪{x}. Similarly, for U ( V (G), NG[U ] = NG(U)∪U . For simplicity, a
singleton set {x} will sometimes be denoted with just x, so G\x denotes the subgraph
of G that is induced by V (G)\{x}. Similarly, G\H denotes the subgraph induced by
V (G)\V (H), for a subgraph H of G. When it is clear, for a subgraph H of G, we write
H instead of V (H) to denote the set of vertices of H.

2 The Class of 4-free EHF graphs

A graph with no 3PC(·, ·), 3PC(4,4), and even wheel is called odd-signable graph.
This name comes from the Truemper’s theorem [26], which implicitly relates the signing
(see Appendix A for the definition) of a graph and the existence of Truemper configu-
rations in the graph. We are particularly interested in this class of graphs because the
class of odd-signable graphs is a superclass of EHF graphs.

2.1 Decomposition

Conforti, et al. [11] gives a characterization of 4-free graphs that are odd-signable
using a clique-cutset decomposition and wheel decomposition. Using this decomposition
theorem, they build a poly-time recognition algorithm and a very fruitful construction
of the class of 4-free, odd-signable graphs (Theorem 2.3).

Definition 2.1. (Ear) A chordless (x, z)-path P is an ear of the hole H if the internal
vertices of P belong to V (G)\V (H), vertices x, z have a common neighbor y in H, and
(H\y) ∪ P induces a hole H ′. We say that vertex y is the center of the ear P , vertices
x, z are the attachments of P in H, and that H ′ is obtained by augmenting H and P .

A graph G is said to be obtained from a graph G′ by an ear addition if the
vertices of G\G′ are the internal vertices of an ear of some hole H in G′. Conforti,
et al. [11] describes a procedure to construct all 4-free, odd-signable graphs. In their
construction, every connected 4-free, odd-signable graph which does not contain a
K1,K2 cutset is either a cube, or it can be obtained starting with a hole, by a sequence
of good ear addition, where the cube is a graph obtained from the complete bipartite
graph K4,4 by removing a perfect matching (i.e. an independent set of E(G) in which
every vertex of the graph is incident to exactly one edge of the set).
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Definition 2.2. (Good Ear Addition) Let G be obtained from G′ by adding an ear P
with attachments x, z ∈ V (G′). It is a good ear addition if |NP (y)| is odd, and

(i) G′ contains no wheel (H, v) s.t. x, y, z ∈ V (H) and vy ∈ E(G);

(ii) G′ contains no wheel (H, y) s.t. x, z ∈ V (H).

Theorem 2.3. (Theorem 6.4 in [11]) Let G be a connected 4-free graph with |V (G)| ≥
3, s.t. G is not a cube, and it contains no K1 or K2-cutset. Then, G is odd-signable if
and only if G can be obtained, starting from a hole, by a sequence of good ear additions.

The two forbidden wheels in a 4-free, odd-signable graphs as stated in Definition
2.2 are called wheel of type-1 and type-2 respectively. A graph subdivision G̃ of a graph
G is a graph obtained from a subdivision of edges in G. The subdivision of some edge
uv ∈ E(G) returns a graph G̃ containing one new vertex w, and with an edge set
replacing uv by two new edges, uw and wv. We say that G and G̃ are homeomorphic.

In most papers about EHF graphs, the authors in fact study a more general class of
odd-signable graphs (for instance, C4-free, odd-signable graphs). This raises a question:
could it be that EHF graphs are structurally simpler than odd-signable graphs? This
could be helpful if the answer is yes. In the following, we show that the class of 4-free
EHF graphs is homeomorphic to the class of 4-free, odd-signable graphs when the
cube is excluded (Theorem 2.4). This theorem gives a negative answer for the above
question, in the (4, cube)-free case, since both graphs are indeed homeomorphic. Note
that, excluding cubes is necessary, since a cube contains a C4, and any subdivision of
a cube always contains 3PC(·, ·), implying that it contains an even hole.

Theorem 2.4. Let G be a 4-free, odd-signable graph containing no cube and no K1,K2

cutset. Then G can be subdivided in such a way that the new graph G̃ is a 4-free EHF
graph containing no cube nor K1,K2 cutset.

Proof. Let G be a 4-free, odd-signable graph containing no cube and no K1,K2 cutset.
By Theorem 2.3, G is obtained starting from a hole, by a sequence of good ear additions.
So G is obtained from G′ by adding a good ear P , where G is also a graph of the same
class as G. Let H ′ be a hole of G′ in which P is attached, and x, z be the vertices where
the two end-nodes t and t′ of P are attached. Moreover, let t1, · · · , tn be a sequence
of vertices in P\{t1, tn} (appear in counterclockwise order along P ) that are adjacent
to y (see Fig. 3). By the definition of good ear addition, n is odd and there is no edge
connecting a vertex of P̊ to a vertex of G′\{y}. We will prove that if G′ is an EHF
graph, then so is G.

x z
y

t1
tj

tn

H ′

P
t t′

Figure 3: A good ear P attached to H ′ (the red and blue dashed edges represent
paths of length at least 1 and 2 respectively)
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Note that a hole ofG is either a hole ofG′, or it is one of (x, tP t1, y, x), (y, tnPt
′, z, y),

(y, tjPtj+1, y) for 1 ≤ j ≤ n − 1 (let us call them trivial holes), or it is obtained by
augmenting P with a chordless (x, z) path in G′\{y} (let us call them nontrivial). We
aim to kill all even holes in G. By killing an even hole, we mean subdividing one of
its edges s.t. its length is no more even, but preserving the parity of other odd holes in
the graph. We will prove that we can inductively kill all even holes in G.

If G is a hole, then we can easily kill it if its length is even, by subdividing one
of its edges. For induction, assume that G′ is even-hole-free. First, we can kill all
trivial holes in G by subdiving some edges of P in such a way that all the trivial holes
in G have odd length. Let us denote the graph obtained by doing these subdivision
G̃. Note that there are an even number of trivial holes in G, because y has an odd
number of neighbors in P . Moreover, |tP t1| and |tnPt′| are both of even length, and
for 1 ≤ j < n, |tjPtj+1| is odd. Hence, the length of P is even, i.e. it contains an odd
number of vertices.

Furthermore, we are going to prove that all the nontrivial holes in G̃ are indeed of
odd length. For a contradiction, suppose that C is a nontrivial hole contained in G̃ and
it has an even length. Denote Q = C\P , which is a path connecting x and z in G′\y.
First, suppose that C = H (recall that H is the hole obtained by augmenting H ′\y and
P ). Note that Q is an (x, z)-path in H ′\y. Moreover, since |P | is even, then |Q| must
be also even. But then, |H ′| = |yxQzy| is also even, contradicts our assumption that
G′ is even-hole-free.

Now suppose that C 6= H. If y has no neighbor in Q, then C ′ = yxQzy is a
hole in G′, and thus by induction hypothesis it has an odd length, i.e. it contains an
odd number of vertices. It yields that Q = C ′\y contains an even number of vertices,
i.e. |Q| is odd, and hence C = xQzt′tnPt1tx contains an odd number of vertices, a
contradiction. So assume that y is adjacent to some vertices of Q. Note that (C, y) is a
wheel in G. By Theorem 2.3, G̃ does not contain even wheel. Thus, y certainly has an
even number of neighbors in Q\{x, z}, because y has an odd number of neighbors in
P . This implies that Q contains an odd number of sectors of (C, y). By the induction
hypothesis, each of the sectors must have odd length. But then the length of Q is odd,
implying that |C| = |P |+ |Q| is odd, a contradiction. This completes our induction.

So G̃ is (4, even-hole)-free. Moreover, since subdividing edges does not create
K1,K2 cutset nor a cube, then G̃ has no K1,K2 cutset nor a cube.

Open question. We are questioning if the above theorem true in general, namely
whether the odd-signable graphs are homeomorphic to EHF graphs when cubes or
squares (i.e. cycles of length 4, or C4) are excluded. If the answer is negative, then
what kind of structures that are not one of the Truemper configurations that implies
the presence of even hole (like a cube for example)?

2.2 Small Treewidth

We now introduce the notion of a tree decomposition and treewidth of a graph. This
notion was introduced by Robertson and Seymour in their work on graph minors [23].
It is one of powerful tools for many graph algorithmic studies. A lot of problems, which
are NP-Complete in general, can be solved in polynomial time even in linear time for
graphs with small treewidth. In general, computing the treewidth of a graph is NP-
Hard. In some classes of graphs, such as the class of chordal graphs, cographs, circle
graphs, and distance hereditary graphs, treewidth can be computed in polynomial
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time. Bodlaender [3] constructed a linear time algorithm that finds an optimal tree
decomposition for a graph with bounded treewidth.

Definition 2.5. A tree decomposition of a graph G(V,E) is a tree T (I, F ), where:

(i) each vertex i ∈ I(T ) is labeled by a subset Bi ⊆ V (G), satisfying
⋃

i∈I Bi = V (G);

(ii) for any edge uv ∈ E(G), there exists an i ∈ I(T ) with u, v ∈ Bi;

(iii) for any v ∈ V (G), the subgraph of T induced by
⋃

v∈Bi
i forms a subtree of T .

Remark 2.5.1. For any i, Bi is referred to as a bag, and the number of vertices
contained in Bi defines the size of the bag.

Every graph has a trivial tree decomposition for which T has one vertex including
all of V (G). This partly motivates the following definition.

Definition 2.6. The treewidth of G is the minimum integer k such that there exists a
tree decomposition G with every bag has size at most k + 1. We denote the treewidth
of G by tw(G).

Using the construction based on Theorem 2.3, Cameron, et al. [4] proves that the
class of 4-free, odd-signable graphs have treewidth at most 5, by some chordalization
technique. Later they use this result to show that the class of (cap, C4)-free, EHF
graphs has treewidth at most 6ω(G)−1 (a cap is a hole with exactly one chord yielding
a triangle). As been mentioned earlier, this shows that optimal coloring and maximum
stable set problems can be solved in poly-time in the class of 4-free, EHF graphs.

3 The Class of (4, 3PC(·, ·))-Free Graphs

Our original motivation of discussing the class of (4, 3PC(·, ·))-free graphs is to have
an insight about the treewidth of the class of K4-free EHF graphs, that seems to be
structurally similar but more complicated.

3.1 Wheels in the class of (4, 3PC(·, ·))-free graphs

Wheels in a (4, 3PC(·, ·))-free graph interacts in a more complicated way compared
to a 4-free, odd signable graph. Indeed, it may contains a wheel whose centers induce
a graph on at least two vertices (for instance, Fig. 4 shows a wheel whose centers
induce a path and a hole respectively). Let us call it multiple wheel and denote it
by (H,C). Note that it has a same rim H, and its center C is a (4, 3PC(·, ·))-free
graph. A multiple wheel is called a 2-wheel if C contains exactly two vertices. For
V (C) = {u, v}, we denote the 2-wheel by (H, {u, v}). In this case, spokes that go
from u (resp. v) are called u-spokes (resp. v-spokes). A sector of (H,u) (resp. (H, v)) is
called u-sector (resp. v-sector), and a subpath P = huHhv of H where hu ∈ NH(u) and
hv ∈ NH(v) that does not contain any other neighbor of u or v is called a (u, v)-sector.

Definition 3.1. A 2-wheel (H, {u, v}) in a (4, 3PC(·, ·))-free graph G is called nested
2-wheel if it satisfies the following properties:

(i) there is a unique u-sector that contains all neighbors of v;

(ii) there is a unique v-sector that contains all neighbors of u.
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H

Figure 4: Wheel centered at a path or a hole (the red and blue dashed edges represent
paths of length at least 1 and 2 respectively)

H
v

H
v

(a) (b)

x x

Figure 5: A nested 2-wheel centered at v and x

Remark 3.1.1. When u and v are adjacent, then u and v have no common neighbor
in H, because G is 4-free.

Definition 3.2. A 2-wheel (H, {u, v}) in a (4, 3PC(·, ·))-free graph G is called alter-
nated 2-wheel if it satisfies the following properties:

(i) u and v are adjacent;

(ii) every u-sector contains either ≥ 2 neighbors of v or none of them;

(iii) every v-sector contains either ≥ 2 neighbors of u or none of them;

(iv) there are at least four (u, v)-sectors.

Remark 3.2.1. Note that (H, {u, v}) is an alternated 2-wheel only if both u and v have
at least five neighbors in H.

u v
H

Figure 6: An alternated 2-wheel centered at uv

In the following, we give characterizations of 2-wheels in a (4, 3PC(·, ·))-free graph.

Lemma 3.3. Let G be a (4, 3PC(·, ·))-free graph which does not contain a cube. Let
(H, v) be a wheel contained in G, and x be a vertex in G\W that is strongly adjacent
to (H, v). Then H ∪ {v, x} either induces a nested 2-wheel, or an alternated 2-wheel
centered at {v, x}.

Proof. See Appendix B.1.
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3.2 Unbounded Treewidth

An undirected graph H is called a minor of the graph G if H can be formed from G
by deleting edges and vertices, and by contracting edges, where an edge contraction is
an operation which removes an edge from a graph while simultaneously merging the
two vertices u, v that are previously joined by an edge, into a single vertex w, with
NH(w) = NG(u) ∪NG(v). In the class G of (4, 3PC(·, ·))-free graph, note that a hole
of minimum length is the minimum K3-minor in G ∈ G. It is an easy fact that a wheel
with rim of length 6 and three spokes is a minimum subdivision of K4 contained in G.
Hence, if G contains a wheel then it contains a K4-minor.

A planar graph is a graph that can be drawn in the plane with no two edges
crossing. Kuratowski [19] states that a graph is planar if and only if it does not contain
subdivision of K5 nor of K3,3 as a subgraph. In fact, a graph in G may contain a
K5-minor [22] (see Fig. 7 (a)). Moreover, an alternated 2-wheel may contain a K5 as a
minor (see Fig 7 (b)). So G contains some graphs that are not planar.

(a) (b)

Figure 7: A (4, 3PC(·, ·))-free graph that contains K5 as a minor

Lemma 3.4. (Robertson, Seymour [24]) Let H be a minor of G. Then tw(H) ≤ tw(G)

It is known that the treewidth of a complete graph Kl on l vertices is l − 1. It
is based on the fact that for a graph G, if a set S ⊆ V (G) induces a clique in G and
T (I, F ) is a tree decomposition of G, then there exists i ∈ V (T ) s.t. S ⊆ Bi. Hence, by
Lemma 3.4, it follows that a graph G containing Kl as a minor has treewidth at least
l − 1. In the following section, we are going to show that a (4, 3PC(·, ·))-free graph
may have arbitrarily large treewidth. The girth of a graph is the length of a shortest
cycle contained in the graph. In the following section, for any integer l ≥ 1, k ≥ 3,
we give a construction of (4, 3PC(·, ·))-free graph that contains a Kl as minor. See
Fig. 10 for an example of graph described below.

Definition 3.5. Let l ≥ 1 and k ≥ 3 be integers. An (l, k)-graph is any graph satisfying
the following properties.

1. V (G) is partitioned into l sets that induce paths P1, . . . , Pl. So, V (G) = V (P1)∪
· · · ∪ V (Pl). Such paths are sometimes called layers.

2. For every 1 ≤ i ≤ l, Pi = vi,1 . . . vi,pi, where P1 has length zero, i.e. P1 = v1,1.

3. For every 2 ≤ i ≤ l and every vertex v in Pi, v has at most one neighbor in
V (P1) ∪ · · · ∪ V (Pi−1). Such a neighbor (if any) is called the ancestor of v.

4. For every 1 ≤ i ≤ l − 1 and every vertex v in Pi, v has 3 or 6 neighbor in Pi+1.
Moreover, v has neighbors in the paths Pi+2, . . . , Pl.
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5. Let 1 ≤ i < j ≤ l be integers, and vj,a and vj,b be vertices in Pj with ancestors
vi,a′ and vi,b′ in Pi. Then a ≤ b if and only if a′ ≤ b′.

6. Let 2 ≤ i ≤ l be an integer, and vi,a, vi,b be two distinct vertices in Pi. If vi,a, vi,b
both have ancestors then b− a ≥ k − 3. If vi,a, vi,b have the same ancestor, then
b− a ≥ k − 2.

7. For all 1 ≤ i ≤ l−1 and all v ∈ V (Pi) with no ancestor, v has exactly three neigh-
bors in Pi+1, namely vi+1,a, vi+1,b and vi+1,c where a, b, c are integers satisfying
a < b < c, b− a = k − 2 and c− b = k − 2 (see Fig. 8).

Pi+1
vi+1,a vi+1,cvi+1,b

k − 1 k − 1
vertices vertices

Pi
v

Figure 8: Property 7

8. For all 1 ≤ i ≤ l − 1 and all v ∈ V (Pi) with an ancestor w, v has exactly
six neighbors in Pi+1, namely vi+1,a, vi+1,b, vi+1,c vi+1,a′, vi+1,b′, vi+1,c′ where
a, b, c, a′, b′, c′ are integers satisfying a < b < c < a′ < b′ < c′, and b− a, c− b, b′−
a′, c′ − b′ ≥ k − 2. Moreover, w has exactly three neighbors in vi+1,cPi+1vi+1,a′,
namely vi+1,a′′, vi+1,b′′, vi+1,c′′ where a′′, b′′ and c′′ are integers satisfying c <
a′′ < b′′ < c′′ < a′, and a′′ − c, b′′ − a′′, c′′ − b′′, a′ − c′′ = k − 2 (see Fig. 9).

v

vi+1,a vi+1,b vi+1,c vi+1,a′′ vi+1,c′vi+1,b′vi+1,a′vi+1,b′′ vi+1,c′′

w

Pi+1

Pi

Pj

Figure 9: Property 8

9. There are no other edges than the ones specified above.

We denote the graph by Gl,k.

Remark 3.5.1. For a graph Gl,k described above,

(i) An index of a vertex is the index of the path in which the vertex is contained. For
instance, every vertex v ∈ Pi has index i for 1 ≤ i ≤ l.

(ii) For 2 ≤ i ≤ l, and j < i with j 6= 0, a vertex v ∈ Pi is said to be of type-j if it
has an ancestor in Pi−j. If v has no ancestor in P1 ∪ · · · ∪Pi−1, then we say that
it is of type-0.
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e

d

b
c

a

c
b

a

Figure 10: G4,4 and a subgraph of G4,4 (each red path in G4,4 has length 4)

Now we will prove that for some integers k, l, the graph defined in Definition 3.5
contains Kl as a minor, as stated in Theorem 3.7. Beforehand, let us make some easy
observation about the construction, as stated in the following lemma.

Lemma 3.6. For every integers l ≥ 1 and k ≥ 3, there exists an (l, k)-graph.

Proof. We prove by induction. For l = 1, the graph consists of a single vertex. For
l = 2, it is a hole of length k, for some k ≥ 3. Now for k ≥ 3, graph Gl,k is constructed
from Gl−1,k by adding a new path Pl, and every vertex in Gl−1,k has neighbors in Pl,
satisfying the properties of Definition 3.5.

Theorem 3.7. For every integers l ≥ 1 and k ≥ 4, Gl,k is 3PC(·, ·)-free, has girth k,
and contains Kl as a minor.

Proof. See Appendix B.2.

As a consequence of Lemma 3.4 and Theorem 3.7, we have the following result,
concluding this section.

Corollary 3.7.1. For every integers l ≥ 1 and k ≥ 4, Gl,k is a (4, 3PC(·, ·))-free
graph with girth k and treewidth at least l.

Open question. What is the exact treewidth of K4-free EHF graphs in terms of the
number of vertices?
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4 The Class of K4-free EHF graphs (in progress)

We have seen in Section 2 that the class of EHF graphs has small treewidth when
triangles are excluded. A natural question to ask is, what might happen when we allow
the existence of triangle. As the first approach, we are going to study EHF graphs
that do not contain a K4. In the following section, we explain some characterizations
of wheels contained in a graph of this class. We sometimes prove a lemma in a more
general graph, namely K4-free, odd-signable graphs which is a superclass of K4-free
EHF graphs.

4.1 Wheels in the class of K4-free EHF graphs

We use the same definition as in Section 3.1 for multiple wheel and 2-wheel in K4-free
EHF graphs, except that we allow triangles but exclude even holes. Beforehand, let us
define basic 2-wheels of type-1 and of type-2, as follows.

Definition 4.1. Let G be a K4-free, odd-signable graph. A 2-wheel (H, {u, v}) with
uv /∈ E(G) is called basic if it has one of the following structure.

(i) |NH(u)|, |NH(v)| = 3 s.t. u1, u2, v2, u3, v3, v1 appear in this order along H, with
u1u2, v1v3, v2u3 ∈ E(G), and possibly u1 = v1 or u3 = v3 (see Fig. 11 (a)).

(ii) |NH(u)| = 3 with the two neighbors u1, u2 is contained in a sector V1 of (H, v)
s.t. u1u2 ∈ E(G), and u3 = vj for some j ∈ {3, 4, · · · , n} (see Fig. 11 (b)).

v1

vj

u v

u2

u1

v2
v3

vn

u2

u1v1

v3

v2u3

v u

(a) (b)

Figure 11: Basic wheels of type-1 (see Fig. (a)) and basic wheel of type-2 (see Fig. (b)),
red and blue dashed edges are paths of odd and even (could be zero) length respectively

Now we are ready to describe the structures of 2-wheels in a K4-free, EHF graph.
Lemma 4.2 and Lemma 4.3 describes the case when the two centers of the 2-wheel are
adjacent and non-adjacent respectively.

Lemma 4.2. Let (H, {u, v}) be a 2-wheel that is contained in a K4-free, EHF graph
G. If u and v are non-adjacent, (H, {u, v}) is either basic or a nested 2-wheel.

Proof. See Appendix B.3.

Lemma 4.3. Let (H, {u, v}) be a 2-wheel that is contained in a K4-free, odd-signable
graph G. If u and v are adjacent, then they have at least one common neighbor in H.

Proof. Let {v1, · · · , vn} be the set of neighbors of v in H. For a contradiction, assume
u, v are adjacent but NH(u) ∩ {v1, · · · , vn} = ∅. Then for every sector Vi of (H, v),
|NVi(u)| is even, since otherwise Vi ∪ {u, v} induces an even wheel. But then u has an
even number of neighbors in H, so (H,u) is an even wheel, a contradiction.
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4.2 Treewidth

In this section, we are going to explain our approach to extend the construction of a
graph in the class of (4, 3PC(·, ·))-free graphs (see Definition 3.5) into a graph that
does not contain a K4 or an even hole. We aim to get insight of the treewidth of graphs
in K4-free EHF class. We propose a hypothesis regarding its treewidth.

Conjecture 4.4. The class of K4-free EHF graphs has unbounded treewidth.

We now explain why we believe that the construction for (4, 3PC(·, ·))-free graph
of arbitrarily large treewidth can be extended to K4-free EHF graphs. Recall that the
construction of Gl,k that is described in Definition 3.5 defines a graph by iteratively
building layers P1, . . . , Pl. Consider a layer Pi with 1 ≤ i ≤ l. Note that by this
construction, every vertex in V (P1) ∪ · · · ∪ V (Pi−1) has several neighbors in Pi.

First, each vertex of Pi has neighbors in Pi+1, and the vertices in Pi appear in
the same order as their neighbor in Pi+1. This simple behavior cannot be kept in
the EHF-construction. Indeed, two consecutive vertices in Pi would then eventually
become adjacent centers of a wheel. By our construction in Definition 3.5, this case is
impossible, because by Lemma 4.3, two adjacent centers of a multiple wheel in K4-free
EHF graph must have at least one common neighbor in the wheel. We therefore have
to introduce triangles and local overlapping between neighbors of two adjacent vertices
in layers P1, · · · , Pl. For example, see Fig. 12.

u v

u1 u2 u3 u4 uv1 uv2 uv3v1 v2 v3 v4 v5 v6
Pi+1

Pi

Figure 12: Overlapping of neighborhood of uv ∈ E(Pi) in Pi

u

u1 u2 u3 u4 vw1 vw2 vw3w1 w2 w3 w4 w5 w6

Pi+1

Pi

Pi′
w

Figure 13: Overlapping of neighborhood of v ∈ V (Pi) and its unique ancestor w ∈
V (Pi′) in Pi+1

Furthermore, we have to decide what to do with a vertex v ∈ Pi that have an
ancestor, say w ∈ Pi′ with i′ < i. Again, the neighbors of v and w in Pi+1 should
overlap and yield triangle. See Fig. 13 to have an insight of it. Now there is a new
problem. In Pi+1, there are vertices with two adjacent ancestors. The two ancestors
could be in the same layer, or could be not. The fact is that in both cases, such a vertex
and its two ancestors induce a triangle. Hence, we also have to handle the adjacency
of such vertices when constructing layer Pi+2. This might be done as in Fig. 14.
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u

w Pi+1

Pi

Pi+2
u1 u2 u3 uv1 uv1 uv1 uw1 uw2 uw3 vw1w1 w2 w3 v1 v2 v3 vw2 vw3

v
Pi′

u v

w Pi+1

Pi

Pi+2
u1 u2 u3 uv1 uv1 uv1 uw1 uw2 uw3 vw1w1 w2 w3 v1 v2 v3 vw2 vw3

Figure 14: Overlapping of neighborhood of cycle (uvw) in Pi+2 (top: when both
ancestors of w are in the same layer, bottom: when they are not in the same layer)

It is tedious but not very difficult to prove that by carefully subdividing the path
Pt+1 (which is indeed a part of a wheel contained in our construction), all the cases
above can be made even-hole-free (for instance, see Fig. 15 that is a subdivision of
graph in Fig. 12). Putting these all together might lead to a construction of EHF
graphs with no K4 and it has arbitrarily large treewidth. An important feature of the
construction is that every vertex has at most two ancestors, and if it has two, then
those two ancestors are adjacent. Another important fact is that a vertex must have
an odd number of neighbors in a layer, since otherwise, there would be an even wheel.

u v

u1 u2 u3 u4 uv1 uv2 uv3v1 v2 v3 v4 v5 v6
Pi+1

Pi

Figure 15: Example of subdivision of graph in Fig. 12

Furthermore, in constructing layer Pi+2, we need to arrange the neighborhood of
vertices in Pj for j < i + 2 that have neighbors in Pi+1 in such a way that all the
conditions above are satisfied. For instance, we could arrange the as the following (see
Fig. 16)

The proof that the whole construction is even-hole-free could be made as follows.
Consider for a contradiction a shortest even hole H in our new graph (by the above
construction), and suppose w.l.o.g. that it contains vertices of Pl. If it contains a unique
vertex in Pl, then there is a contradiction, since a vertex in Pl has at most two ancestors
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Pi

Pi+1

Pi+2

Pi′

u v

w

x v′

Figure 16: Putting together all the above conditions

(that are adjacent if there are exactly two of them). So, H in fact contains a subpath
of length at least 1 in Pl. We hope that we can obtain a contradiction by replacing this
subpath by shorter path, while preserving the parity.

In addition, we observe that graphs that are constructed in this way contains
diamond (for instance, graphs in Fig. 14). This raises the following question: could it
be that EHF graphs with no K4 and diamond have bounded treewidth?

5 Conclusion and future research

In this report, we analyze some subclass of EHF graphs. Our first result shows that the
class of (4, 3PC(·, ·))-free graphs and the class of4-free EHF graphs are homeomorphic
when cube is excluded, meaning that the structure of 4-free EHF graphs is not much
simpler than the structure of (4, 3PC(·, ·))-free graphs which is its superclass. We
question whether the same property may hold in general, namely the class of cube-free
(or more general, square-free) EHF graphs.

Furthermore, we construct graphs which belong to the class of (4, 3PC(·, ·))-free
graphs that contain Kl as a minor and having girth k for any integer k, l ≥ 1. This leads
to a conclusion that the class of (4, 3PC(·, ·))-free graphs have unbounded treewidth.
However the exact treewidth for such graphs are still not yet computed, and it is also an
interesting question. Indeed, we believe that the treewidth of the graphs is logarithmic
in the number of vertices.

Moreover, in [22], the optimal coloring problem for this class are solved. In partic-
ular, graphs in this class are 3-colorable, and there exists an algorithm to color them
in poly-time. The problem of finding maximum stable sets is still open. As been de-
scribed in Section 4, we aim to extend this construction into K4-free EHF graphs. We
conjecture that the treewidth of this class of graphs is also unbounded.
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[16] M.V.G. da Silva and K. Vǔsković. Decomposition of even-hole-free graphs with star
cutsets and 2-joins, preprint (2008).

[17] E. Diot, S. Tavenas, N. Trotignon. Detecting wheels. CoRR abs/1308.6433 (2013).
Structure and algorithms for (cap, even-hole)-free graphs. CoRR abs/1611.08066
(2016).
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[27] K. Vǔsković. Even-hole-free graphs: a survey. Applicable Analysis and Discrete
Mathematics, 10(2):219–240, 2010.
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Appendices

A Background on Graph Theory

A graph G(V,E) comprises of a set V of vertices and a set E of edges. It is finite if
|V |, |E| are finite. In an undirected graph, an edge is a non-ordered pair of vertices. An
undirected graph without loops (i.e. an edge between a vertex and itself) or multiple
edges (i.e. two or more edges joining a pair of vertices) is known as a simple graph.
an edge connecting vertices u and v is denoted by uv, and vertices u and v are called
end-nodes of the edge uv. Moreover, we say that u and v are adjacent, and that v is
incident to e. The degree of a vertex is the number of edges incident to it. For a graph
G, the complement of G, denoted as Ḡ, is a graph Ḡ(V̄ , Ē) where V̄ = V and for any
u, v ∈ V̄ , uv ∈ Ē if and only if uv /∈ E.

A bipartite graph is a graph whose set of vertices are decomposed into two disjoint
sets which are called bipartite components, s.t. no two vertices within the same set
are adjacent. It is called complete bipartite if every pair of vertices in the different
components are adjacent. If the bipartite components are of size p and q respectively,
the graph is denoted by Kp,q. A complete graph is a graph in which every pair of its
vertices are adjacent. It is denoted by Kl if it contains l vertices. A clique in a graph
is an induced subgraph that is isomorphic to a complete graph. The clique number
of a graph, ω(G) is the number of vertices in a maximum clique in G (a clique Kl is
maximum if no integer l′ > l s.t. Kl′ is a clique of G).

Skew partition of a graph is a partition of its vertices into two subsets, such that
the induced subgraph formed by one of the two subsets is disconnected and the induced
subgraph formed by the other subset is the complement of a disconnected graph (see
Fig. 17 (d)). Here we also provide diagrams of graph decomposition by clique cutset,
k-star cutset, and 2-join that are described in Section 1.1.2.

A B

S

A B

S

(b) k-star cutset

(a) clique cutset V1 V2

A1 A2

B1 B2

(c) 2-join (d) skew-partition

Figure 17: Diagrams of cutset decompositions

We give the definition of graph signing that is mentioned in Section 2. A graph
G is a signed graph if the edges of G are given 0, 1 labels. A signing of a graph G
is assigning 0,1 weights to the edges of G. A subset of E(G) has an odd (resp. even)
weight if it contains an odd (resp. even) number of edges with sign 1.
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B Proofs

B.1 Proof of Lemma 3.3

Lemma 3.3. Let G be a (4, 3PC(·, ·))-free graph which does not contain a cube. Let
(H, v) be a wheel contained in G, and x be a vertex in G\W that is strongly adjacent
to (H, v). Then H ∪ {v, x} either induces a nested 2-wheel, or an alternated 2-wheel
centered at {v, x}.

Proof. First, suppose that x has exactly two neighbors in W = (H, v). Assume v ∈
NW (x) (i.e. vx ∈ E(G)) then NH(x) ∩ NH(v) = ∅ because G is 4-free. Let x′ be
the unique neighbor of x in H\NH(v), then there exists a 3PC(v, x′) (see Fig. 18
(a)). Otherwise assume v /∈ NW (x), and let NW (x) = {x′, x′′} ( V (H). Note that
x′x′′ /∈ E(G) because G is 4-free. But then there exists a 3PC(x′, x′′) (see Fig. 18 (b)).
So x has at least three neighbors in W . Now we consider two cases.

x

x′

v

x

x′

v

x′′

(a) (b)

Figure 18: If x has exactly two neighbors, then there exists 3PC(·, ·)

Case 1. v /∈ NW (x) (i.e. vx /∈ E(G))

We will prove that V (H) ∪ {v, x} induces a nested 2-wheel. For a contradiction,
suppose not. So some sector of (H, v) contains some neighbor of x but not all of them.
First suppose that there exists a sector containing at least two neighbors of x, and
w.l.o.g. let V1 be such a sector. Let h1, h2 be the neighbors of v1, v2 in H that are not
in V1 respectively (recall that v1 and v2 are the end-nodes of V1).

Claim B.0.1. NH(x) ⊆ V1 ∪ {h1, h2}

Proof of Claim B.0.1. For a contradiction, assume that x∗ is a neighbor of x in
H\(V1 ∪ {h1, h2}). But then there exists a 3PC(x, v) (see Fig. 19 (a)).

By the claim, h1 ∈ NW (x) or h2 ∈ NW (x). If h1 ∈ NW (x), then v1 /∈ NW (x)
because G is 4-free. But then there exists a 3PC(x, v1) (see Fig. 19 (b)). The similar
holds when h2 ∈ NW (x). Hence, NW (x) ⊆ V1, a contradiction. So every v-sector
contains at most one neighbor of x. Note that (H,x) is a wheel, because |NH(x)| ≥
3. By symmetry, it implies that every x-sector contains at most one neighbor of v.
Hence, for every sector Vi, there is a unique vertex xi s.t. xi ∈ NH(x), and for every
sector Xi, there is a unique vertex vi+1 s.t. vi+1 ∈ NH(v), i.e. |NH(v)| = |NH(x)|
and v1, x1, v2, x2, · · · , vn, xn appear in this (counter-clockwise) order along H, where
n = |NH(v)|. Moreover, this implies that NH(v) ∩NH(x) = ∅. Note that, when n ≥ 4
then there exists 3PC(u, v1) (see Fig. 20 (a)). Otherwise, if n = 3, since G is cube-free,
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x

v

(a) (b)

x∗

h2 h1

v2 v1

x

v

h2 h1

v2 v1

Figure 19: Proof of all neighbors of x are contained in one sector of (H, v)

then G[H ∪ {v, x}] is not a cube. Instead, it induces a cube where at least one of its
edges is subdivided, and hence it contains a 3PC(·, ·) (see Fig. 20 (b)), a contradiction.

v1x1
v2 xn

vn

v xv x

(a) (b)

v1

v2
v3

x1

x2

x3

Figure 20: Case 1: every v-sector contains a unique one neighbor of x and every
x-sector contains a unique neighbor of v

Case 2. v ∈ NW (x) (i.e. vx ∈ E(G))

We will show that V (H) ∪ {v, x} induces either a nested 2-wheel or an alternated
2-wheel. We will show that every sector of (H, v) contains at least two neighbors of x.
Suppose not, and w.l.o.g. let V1 contains exactly one neighbor of x, say such neighbor
is x′. Note that x′ /∈ NH(v) because G is 4-free, but then there exists a 3PC(v, x′)
(see Fig. 21 (a)). Hence every sector of (H, v) contains at least two neighbors of x, and
by symmetry, every sector of (H,x) contains at least two neighbors of v. So (H, {v, x})
is an alternated 2-wheel (see Fig. 21 (b)). This completes the proof.

v x

v2 v1
x′

(a)

v3

vn

v x

(b)

v1v1

x2

xmx1

Figure 21: Case 2: vx ∈ E(G)
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B.2 Proof of Theorem 3.7

Theorem 3.7. For every integers l ≥ 1 and k ≥ 4, Gl,k is 3PC(·, ·)-free, has girth k,
and contains Kl as a minor.

Proof. First, we will prove that Gl,k has girth k. Let H be a hole contained in G.
Consider the path of Gl,k with largest index that contains some vertex of H. W.l.o.g. we
may assume that Pl is this path. Let x be a vertex of H ∩ Pl, and P = uPlv be the
subpath of Pl that is included in H, containing x, and s.t. P is maximal, i.e. every
vertex of P has index l and P cannot be made longer by adding some vertices of Pl.
We may assume that V (H) ∩ V (Pi) is not a singleton, for otherwise, assume u is the
unique vertex of H that is contained in Pl. Since every vertex in H has degree 2 in
H and Pl contains a unique vertex of H, then u must have at least two ancestors, a
contradiction. So P has length at least one, i.e. u 6= v, and both u and v have an
ancestor. By construction, if u and v have a common ancestor, then |V (P )| ≥ k − 1
thus H has length at least k. If u and v have different ancestors, then |V (P )| ≥ k − 2
so H has length at least k.

Now we will show that Gl,k does not contain any 3PC(·, ·). For a contradiction,
suppose it does, and let Θ = 3PC(u, v) be such a theta with the fewest number of
vertices. Let x be a vertex with largest index in Θ. W.l.o.g. we may assume that x
has index l, because all vertices of Gl,k with index larger than the index of x can be
deleted. Let P be the maximal subpath of Pl that contains x and that is included in
Θ. If P has length zero, then its unique vertex must have two neighbors in Θ, that
need to be ancestors, a contradiction. So, P has length at least 1, and each ends of P
has an ancestor. We set P = vl,jPlvl,j′ , with j < j′.

Claim B.0.1. u, v /∈ Pl, in particular, every vertex of Θ ∩ P has degree 2 in Θ.

Proof of Claim B.0.1. For a contradiction, suppose u ∈ V (Pl). Since dΘ(u) = 3 and
dPl

(u) ≤ 2, then u has an ancestor. Let vi,j be its ancestor for some 1 ≤ i ≤ l − 1. By
construction, vi,j has at least three neighbors in Pl, say vl,a, vl,b, vl,c with a < b < c,
s.t. every vertex in vl,aPlvl,c\{vl,b} has degree 2 in Gl,k, and u ∈ {vl,a, vl,b, vl,c} (see
Fig. 22). Since dGl,k

(u) = 3, then it must be that vi′,j ∈ V (Θ), and a vertex of
{vl,a, vl,b, vl,c}\{u} is also contained in Θ. But then either vi,jvl,aPlvl,b or vi,jvl,bPlvl,c
is a hole of Θ. W.l.o.g. suppose vi,jvl,aPlvl,b is a hole in Θ, which yields that {u, v} =
{vl,a, vl,b} (because every vertex of vl,aPlvl,b has degree 2 in Gl,k). So vl,aPlvl,b and
vl,avi,jvl,b are two paths of Θ. Since dGl,k

(vl,b) = 3, then the third path of Θ must
contain vl,c, and hence vi,jvl,c is a chord of Θ, a contradiction. This proves the claim.

Pl

vi,j

vl,cvl,a vl,b

Figure 22: Claim B.0.1

Note that vl,j and vl,j′ both have ancestor, say vi,r and vi′,r′ respectively with
1 ≤ i, i′ ≤ l and r < r′ that are also in Θ. Moreover, it must be that vl,j and vl,j′ are
the unique neighbors of vi,r and vi′,r′ respectively in P , for otherwise a vertex of P has
degree 3 in Θ, a contradiction to Claim B.0.1.
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Claim B.0.2. vi,r 6= vi′,r′, vi,rvi′,r′ /∈ E(Gl,k) and some internal vertex of P has an
ancestor.

Proof of Claim B.0.2. First, suppose that every internal vertex of P has degree 2 in Gl,k.
By construction (see properties 7 and 8 of Definition 3.5), either vi,r = vi′,r′ ∈ V (Pl−1)
or vi,r and vi′,r′ are adjacent. Hence, vi,rvl,jPvl,j′vi′,r′ is a hole of Θ, so the hole must
contain both u and v. By Claim 1, u, v /∈ V (Pl), so u, v ∈ {vi,r, vi′,r′}. But this is not
possible as vi,r = vi′,r′ or vi,rvi′,r′ ∈ E(Gl,k). This proves the claim.

We now set P ′ = vi,rvl,jPlvl,j′vi′,r′ (see Fig. 23).

Pl
vl,j vl,j′

vi,r

vi′,r′

Figure 23: Path P ′

Claim B.0.3. P̊ does not contain any vertex with a type-0 ancestor with index l − 1

Proof of Claim B.0.3. For a contradiction let vl−1,t be a type-0 vertex with index
l − 1 that has children in the interior of P . Note that vl−1,t /∈ V (Θ) since vl−1,t has
three neighbors in P (see Fig. 24). Now, consider a shortest path Q from vi,r to vi′,r′ in
Gl,k[V (P ′)∪{vl−1,t}]. Note that Q is shorter than P ′, because it goes through vl−1,t. So,
P ′ can be substituted by Q in Θ, which provides a smaller 3PC(u, v), a contradiction
to the minimality of Θ. This proves the claim.

By Claim B.0.2, some internal vertex of P has an ancestor. Let vi∗,r∗ be such an
ancestor with i∗ maximal. If i∗ 6= l − 1, then, by the construction of Gl,k, vi∗,r∗ has a
neighbor w in Pl−1, and by maximality of i∗, w has no neighbor in the interior of P .
Hence, by the construction of Gl,k, w = vi,r = vi′,r′ (see Fig. 25), a contradiction. So,
i∗ = l − 1. Note that vl−1,r∗ 6= vi,r and vl−1,r∗ 6= vi′,r′ because vi,r and vi′,r′ both have
a unique neighbor in P . By Claim 2, vl−1,r∗ has an ancestor vi∗∗,r∗∗ .

Suppose first that vi∗∗,r∗∗ 6= vi,r and vi∗∗,r∗∗ 6= vi′,r′ . The neighbors of vl−1,r∗ along
Pl−1 are type-0 vertices, so by Claim 2, they have no neighbor in the interior of P . It
follows that these two neighbors are vi,r and vi′,r′ . Note that vi∗∗,r∗∗ has three neighbors
in P , so vi∗∗,r∗∗ /∈ V (Θ). It follows that we obtain a shorter 3PC(u, v) by replacing
P ′ with R = vi,rvl−1,r∗vi′,r′ , a contradiction (see Fig. 26). Hence, vi∗∗,r∗∗ = vi,r or
vi∗∗,r∗∗ = vi′,r′ .

Up to symmetry, we suppose that vi∗∗,r∗∗ = vi′,r′ . Vertex vl−1,r∗−1 has type-0. So,
by Claim B.0.3, it has no neighbor in the interior of P . Since it has neighbors in P ,
we have vl−1,r∗−1 = vi,r. Let vl,a, vl,b, vl,c, vl,a′ , vl,b′ , vl,c′ be the six neighbors of vl−1,r∗

in Pl with a < b < c < a′ < b′ < c′ (see Fig. 27). Note that, vl,a, vl,b, vl,c ∈ V (P ) and
vl,a′ , vl,b′ , vl,c′ /∈ V (P ).
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Pl
vl,j′

vi′,r′

vl−1,t

Pl
vl,j′

vl−1,t vi′,r′

vl,j

vi,r

Q

vi,r

vl,j

Q

Pl
vl,j′

vi′,r′

vl−1,t

Pl
vl,j′

vl−1,t vi′,r′

vl,j

vi,r Q

vl,j

vi,r Q

Figure 24: Four possible cases of replacing P ′ (see Fig. 23) with Q (red path) that
yields a shorter 3PC(u, v)

Pl
vl,j′vl,j

vi∗,r∗

vi,r = vi′,r′

Figure 25: If i∗ 6= l − 1 then w = vi,r = vi′,r′

vl,j′

vl−1,r∗

vl,j

vl−1,r R

Pl

vi′,r′

vi∗,r∗

P ′

Figure 26: Replacing P ′ with R yields a shorter 3PC(u, v)

If {vl,a′ , vl,b′ , vl,c′} ∩ V (Θ) = ∅, then we obtain a shorter 3PC(u, v) by replacing
P ′ with vl−1,rvl−1,r∗vi′,r′ , a contradiction. So, {vl,a′ , vl,b′ , vl,c′} ∩ V (Θ) 6= ∅. Let vl,j′′

be the neighbor of vi′,r′ with j′′ maximal. Since vl−1,r∗ /∈ V (Θ), V (vi′,r′vl,j′′Plvl,c′) ⊆
V (Θ). If vi′,r′ /∈ {u, v}, then by replacing vl−1,rP

′vi′,r′vl,j′′Plvl,c′ with vl−1,rvl−1,r∗vl,c′ ,
we obtain a shorter 3PC(u, v), a contradiction. So, vi′,r′ ∈ {u, v}, and w.l.o.g. we
assume vi′,r′ = u. If v 6= vi−1,r, then by replacing P ′′ = vl−1,rP

′vi′,r′vl,j′′Plvl,c′ with
Q′′ = Gl,k[{vl−1,r, vl−1,r∗ , vi′,r′ , vl,c′}] (see Fig. 28), we obtain 3PC(vl−1,r∗ , v), which is
shorter, a contradiction. So, v = vl−1,r.
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vl−1,r∗

vl,j

vl−1,r

vi′,r′

Pl
vl,j′vl,a vl,b vl,c vl,j′′ vl,a′ vl,b′ vl,c′

Figure 27

vl−1,r∗

vl,j

vl−1,r

vi′,r′

Pl
vl,j′′vl,j′ vl,c′P ′′

Q′′

Figure 28: Replacing P ′′ with Q′′ gives 3PC(vl−1,r∗ , v) shorter than 3PC(u, v)

Since vl−1,r has type-0, we must have vl−1,r−1 ∈ Θ. Let vl,a∗ , vl,b∗ , vl,c∗ be the
three neighbors of vl−1,r in Pl, with a∗ < b∗ < c∗ (so that c∗ = j). Since vl−1,r has
type-0, vl,a∗ ∈ Θ. Also, vl,c∗∗ ∈ Θ, where vl,c∗∗ is the neighbor of vl−1,r−1 in Pl with
c∗∗ maximum (see Fig. 29). Hence, vl−1,r−1vl−1,rvl,a∗Plvl,c∗∗vl−1,r−1 is a hole in Θ, a
contradiction since u cannot be in that hole. Hence, Gl,k is 3PC(·, ·)-free.

vl−1,r∗

vl,j

vl−1,r

vi′,r′

Pl
vl,j′′vl,j′

vl−1,r−1

vl,a∗vl,c∗∗

Figure 29: vl−1,r−1vl−1,rvl,a∗Plvl,c∗∗vl−1,r−1 is a hole in Θ

So Gl,k is 3PC(·, ·)-free and it has girth k. We now show that it contains Kl as a
minor. Note that property 4 of Definition 3.5 guarantees that for 1 ≤ i ≤ l − 1, every
vertex of index i has neighbors in Pi+1, Pi+2, · · · , Pl. To get a Kl minor, then for every
1 ≤ i ≤ l, contract the path Pi into a vertex. This gives us a graph on l vertices where
any pair of vertices are adjacent.
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B.3 Proof of Lemma 4.2

Beforehand, let us make an observation of some simple properties of a 2-wheel in the
class of K4-free EHF graphs.

Lemma B.1. Let (H, {u, v}) be a 2-wheel that is contained in G. If u and v are non-
adjacent, then u and v have at most two common neighbors, and if it is two, then they
are adjacent.

Proof. Suppose that u and v have three common neighbors in H. Since H is a hole,
then at least two of the common neighbors are non-adjacent. But then those two
common neighbors together with u and v induce a C4. In the case where u and v have
exactly two common neighbors but non-adjacent, they also induce a C4. This proves
the lemma.

Lemma B.2. Let v be a vertex that is strongly adjacent to a hole H in G. Then one
of the following holds

(i) It has exactly two neighbors that are adjacent in H

(ii) It has an odd number of neighbors in H

Proof. First assume that v has exactly two neighbors in H, say NH(v) = {v1, v2}.
For a contradiction, suppose v1v2 /∈ E(G). But then, there exists 3PC(v1, v2) with
P1 = v1vv2, P2 = v1H1v2, P3 = v1H2v2 whereH1, H2 are two subpaths ofH connecting
v1 and v2. Furthermore, if v has at least three neighbors in H, then (H, v) is a wheel.
Since G is odd-signable, then |NH(v)| must be even, since otherwise (H, v) is an even
wheel. This proves the lemma.

Lemma 4.2. Let (H, {u, v}) be a 2-wheel that is contained in a K4-free, EHF graph
G. If u and v are non-adjacent, (H, {u, v}) is either basic or a nested 2-wheel.

Proof. Let NH(v) = {v1, · · · , vn} and NH(u) = {u1, · · · , um}, with n,m ≥ 3 and odd.
For a contradiction, suppose that (H, {u, v}) is not a nested 2-wheel. Hence, some but
not all neighbors of u are contained in a sector, w.l.o.g. V1. Let NV1(u) = {u1, · · · , uk}
with 1 ≤ k < n. We consider two cases.

Case 1. v has at least five neighbors in H (i.e. n ≥ 5)

Case 1.1. k ≥ 3

Let Vi with i 6= 1 be a sector containing some vertices of {uk+1, · · · , un}. Note
that k is odd because the graph does not contain an even wheel. So there are at least
two neighbors of u that are not in V1. Suppose h1 and h2 are the neighbors of v1 and
v2 respectively, that are in H but not in V1. We claim that NH(u) ⊆ V1 ∪ {h1, h2}.
Since otherwise, there exists 3PC(u, v) (see Fig. 30 (a)). Note that both h1 and h2 are
indeed neighbors of u. Furthermore, by Lemma B.1, it cannot be that both u1 = v1

and uk = v2. Moreover, if both u1 6= v1 and uk 6= v2, then there exists 3PC(v1, u)
or 3PC(v2, u) unless both vn = h1 and v3 = h2 (see Fig. 30 (b)). But the last case
(vn = h1 and v3 = h2) is not possible by Lemma B.1. So either u1 = v1 and uk 6= v2, or
u1 6= v1 and uk = v2. W.l.o.g. suppose that u1 = v1 and uk 6= v2. Note that it cannot
be that v3 = h2, since otherwise, Lemma B.1 is contradicted. But then there exists
3PC(v2, u) (see Fig. 30 (c)), a contradiction.
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Figure 30: Case 1.1

Case 1.2. k = 2

Applying Lemma B.2 to the hole that is induced by V1 ∪ {v}, we obtain u1u2 ∈
E(G). First suppose that m = 3. We claim that u3 ∈ {v3, · · · , vn}. Since otherwise,
there exists 3PC(u3, v) (see Fig. 31 (a)). Hence, (H, {u, v}) induces a basic 2-wheel of
type-2 (see Fig. 31 (b)). Now suppose that m ≥ 5. Note that, if there exists a u-sector
containing at least three neighbors of v then we are in a similar case to Case 1.1. So,
every v-sector contains at most two neighbors of u, and every u-sector contains at most
two neighbors of v. We claim that if a v-sector containing a single neighbor of u then
such vertex must be one of the end-nodes of the sector. For otherwise, suppose Vi 6= V1

and u′ ∈ NH(u)∩Vi be s.t. the statement is contradicted. Then there exists 3PC(u′, v)
(see Fig. 31 (c)). By Lemma B.1, u and v have exactly one common neighbor, or two
common neighbors that are adjacent. In fact, the latter case is not possible. To see
this, suppose that Vi is a v-sector whose end-nodes are adjacent and they are neighbors
of u. Hence, other v-sectors must contain exactly two neighbors of u in its interior.
But then (H,u) is an even wheel, a contradiction.
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vu
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u2 u1

vn

u3

v1

vu

v2
u2 u1

vn

u3

(a) (b)

vj vj

v1

vu

v2
u2 u1

vn

u3

(c)

u′

Figure 31: Case 1.2

So, except on one sector where u and v have a common neighbor, every v-sector
contains either none or two neighbors of u, and every u-sector contains either none
or two neighbors of v. W.l.o.g. we may assume that vn are the common neighbor of
u and v (i.e. un = vn). By observing the parity of every path in H connecting two
vertices which are neighbors of u or v, we obtain that C = uun−1Vn−2vn−1vv2V1u2u is
an even hole. To be more precise, both of |unHv1| and |u1Hu2| are odd. Since |unHu1|
is also odd then |v1Hu1| is even. It turns out that |u2Hv2| is even because |v1Hv2| is
odd. But then the hole C = uvnvv2Hu2u has even length (see Fig. 32), a contradiction.
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Figure 32: Case 1.2: C = uvnvv2Hu2u is an even hole in (H, {u, v}) (the dashed red
and blue edges are paths of odd and even length respectively)

Case 1.3. k = 1

It turns out that every v-sector contains at most one neighbor of u. First suppose
that m = 3. By Lemma B.1, it cannot be all of NH(u) are the neighbors of v, i.e. there
exists a v-sector whose internal vertices contain a single neighbor of u. W.l.o.g. let
V1 be such a sector. We claim that u2 = h2 and u3 = h1 where h1 and h2 are the
neighbors of v1 and v2 respectively in H, but are not in V1. For otherwise, there exists
3PC(u1, v) (see Fig. 33 (a)). So u3, v1u1v2u2 appear in this (counter-clockwise) order
along H with u2v2, u3v1 ∈ E(G), and possibly vn = u3 or v3 = u2 (see Fig. 33 (b)).
Note that by Lemma B.1, it cannot be that both vn = u3 and v3 = u2. W.l.o.g. suppose
that vn 6= u3. But then there exists 3PC(v1, u) (see Fig. 33 (b)), a contradiction.

Now suppose that m ≥ 5. Note that, if there exists a u-sector containing at least
two neighbors of v, then we are done (it is similar to Case 1.1. or Case 1.2.). So every
u-sector contains a single neighbor of v. This implies that NH(v) and NH(u) alternate
in H, and hence u and v have no common neighbor. So every v-sector contains a unique
neighbor of u in its interior. But then there exists 3PC(u, v) (see Fig. 33 (c)). Hence,
(H, {u, v}) is a nested 2-wheel. This completes the proof of Case 1.

vu

u1

vn

u3

(a) (b)

vj

v2
h2

v1
h1

vu

u1

vn

vj

v2 v1
h1 = u3

h2 = u2

vu

u1

vn

u3vj

v2 v1

(c)

Figure 33: Case 1.3

Case 2. v has exactly three neighbors in H (i.e. n = 3)

We may assume that m = 3, since for m ≥ 5, we are in the symmetric case of Case
1. So m = n = 3, and since k < m, then k = 2 or k = 1.

Case 2.1. k = 2

Applying Lemma B.2 to the hole that is induced by V1 ∪ {v}, we obtain u1u2 ∈
E(G). If u3 = v3 then (H, {u, v}) is a basic 2-wheel of type-2 (see Fig. 34 (a)). Other-
wise, by symmetry, assume that u3 ∈ V̊2. Note that by Lemma B.2, it turns out that
v1v3 ∈ E(G). If u3v2 /∈ E(G) then there exists 3PC(u3, v2) (see Fig. 34 (b)), and if
u3v2 ∈ E(G) then (H, {u, v}) induces a basic 2-wheel of type-1 (see Fig. 34 (c)).
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Figure 34: Case 2.1

Case 2.2. k = 1

It turns out that every v-sector contains a unique neighbor of u, and by symmetry,
every u-sector contains a unique neighbor of v. Hence, V (H) ∪ {u, v} either induces a
cube (see Fig. 35 (a)) and thus contains a C4, or it is a cube where at least one of its
edges is subdivided and thus contains a 3PC(·, ·) (see Fig. 35 (b)). In both cases, we
obtain a contradiction. This completes the proof of Lemma 4.2.
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Figure 35: Case 2.2
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